Tensor Product#

from qualtran import Bloq, CompositeBloq, BloqBuilder, Signature, Register
from qualtran import QBit, QInt, QUInt, QAny
from qualtran.drawing import show_bloq, show_call_graph, show_counts_sigma
from typing import *
import numpy as np
import sympy
import cirq

TensorProduct#

Tensor product of a sequence of block encodings.

Builds the block encoding as

\[ B[U_1 ⊗ U_2 ⊗ \cdots ⊗ U_n] = B[U_1] ⊗ B[U_2] ⊗ \cdots ⊗ B[U_n] \]

When each \(B[U_i]\) is a \((\alpha_i, a_i, \epsilon_i)\)-block encoding of \(U_i\), we have that \(B[U_1 ⊗ \cdots ⊗ U_n]\) is a \((\prod_i \alpha_i, \sum_i a_i, \sum_i \alpha_i \epsilon_i)\)-block encoding of \(U_1 ⊗ \cdots ⊗ U_n\).

Parameters#

  • block_encodings: A sequence of block encodings.

Registers#

  • system: The system register.

  • ancilla: The ancilla register (present only if bitsize > 0).

  • resource: The resource register (present only if bitsize > 0).

References#

from qualtran.bloqs.block_encoding import TensorProduct

Example Instances#

from qualtran.bloqs.basic_gates import Hadamard, TGate
from qualtran.bloqs.block_encoding.unitary import Unitary

tensor_product_block_encoding = TensorProduct((Unitary(TGate()), Unitary(Hadamard())))
from attrs import evolve

from qualtran.bloqs.basic_gates import CNOT, TGate
from qualtran.bloqs.block_encoding.unitary import Unitary

u1 = evolve(Unitary(TGate()), alpha=0.5, ancilla_bitsize=2, resource_bitsize=1, epsilon=0.01)
u2 = evolve(Unitary(CNOT()), alpha=0.5, ancilla_bitsize=1, resource_bitsize=1, epsilon=0.1)
tensor_product_block_encoding_properties = TensorProduct((u1, u2))
import sympy

from qualtran.bloqs.basic_gates import Hadamard, TGate
from qualtran.bloqs.block_encoding.unitary import Unitary

alpha1 = sympy.Symbol('alpha1')
a1 = sympy.Symbol('a1')
eps1 = sympy.Symbol('eps1')
alpha2 = sympy.Symbol('alpha2')
a2 = sympy.Symbol('a2')
eps2 = sympy.Symbol('eps2')
tensor_product_block_encoding_symb = TensorProduct(
    (
        Unitary(TGate(), alpha=alpha1, ancilla_bitsize=a1, epsilon=eps1),
        Unitary(Hadamard(), alpha=alpha2, ancilla_bitsize=a2, epsilon=eps2),
    )
)

Graphical Signature#

from qualtran.drawing import show_bloqs
show_bloqs([tensor_product_block_encoding, tensor_product_block_encoding_properties, tensor_product_block_encoding_symb],
           ['`tensor_product_block_encoding`', '`tensor_product_block_encoding_properties`', '`tensor_product_block_encoding_symb`'])

Call Graph#

from qualtran.resource_counting.generalizers import ignore_split_join
tensor_product_block_encoding_g, tensor_product_block_encoding_sigma = tensor_product_block_encoding.call_graph(max_depth=1, generalizer=ignore_split_join)
show_call_graph(tensor_product_block_encoding_g)
show_counts_sigma(tensor_product_block_encoding_sigma)
../../_images/4fe807b662bb7b797855eb5c9c84439ad19300c90a6c84a47334f5e3bdf6f768.svg

Counts totals:

  • B[H]: 1

  • B[T]: 1